38 lines
1.4 KiB
Python
38 lines
1.4 KiB
Python
import gradio as gr
|
|
import imageio.core.util
|
|
import numpy as np
|
|
import skimage.color
|
|
from PIL import Image
|
|
|
|
from modules import scripts_postprocessing
|
|
from modules.ui_components import FormRow
|
|
|
|
|
|
imageio.core.util._precision_warn = lambda *args, **kwargs: None
|
|
|
|
|
|
class ScriptPostprocessingColorEnhance(scripts_postprocessing.ScriptPostprocessing):
|
|
name = "Color Enhance"
|
|
order = 30000
|
|
|
|
def ui(self):
|
|
with FormRow():
|
|
strength = gr.Slider(label="Color Enhance strength", minimum=0, maximum=1, step=0.01, value=0)
|
|
return { "strength": strength }
|
|
|
|
def process(self, pp: scripts_postprocessing.PostprocessedImage, strength):
|
|
if strength == 0:
|
|
return
|
|
|
|
info_bak = {} if not hasattr(pp.image, "info") else pp.image.info
|
|
pp.image = self._color_enhance(pp.image, strength)
|
|
pp.image.info = info_bak
|
|
pp.info["Color Enhance"] = strength
|
|
|
|
def _lerp(self, a: float, b: float, t: float) -> float:
|
|
return (1 - t) * a + t * b
|
|
|
|
def _color_enhance(self, arr, strength: float = 1) -> Image.Image:
|
|
lch = skimage.color.lab2lch(lab=skimage.color.rgb2lab(rgb=np.array(arr, dtype=np.uint8)))
|
|
lch[:, :, 1] *= 100/(self._lerp(100, lch[:, :, 1].max(), strength)) # Normalize chroma component
|
|
return Image.fromarray(np.array(skimage.color.lab2rgb(lab=skimage.color.lch2lab(lch=lch)) * 255, dtype=np.uint8)) |